Category (mathematics)
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the notion of category provides a fundamental and abstract way to describe mathematical entities and their relationships. In addition to formalizing mathematics, category theory is also used to formalize many other systems in computer science, such as the semantics of programming languages. Two categories are the same if they have the same collection of objects, the same collection of arrows, and the same associative method of composing any pair of arrows. Two ''different'' categories may also be considered " equivalent" for purposes of category theory, even if they do not have precisely the same structure. Well-known categories are denoted by a short capitalized word or abbreviation in bold or italics: examples include Set, the category of sets and set functions; Ring, the category of rings and ring homomorphisms; and Top, the category of topological spaces and continuous maps. All of the preceding categories have the identity map as identity arrows and composition as the associative operation on arrows. The classic and still much used text on category theory is '' Categories for the Working Mathematician'' by Saunders Mac Lane. Other references are given in the
References Reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to ''refer to'' the second object. It is called a ''name'' ...
below. The basic definitions in this article are contained within the first few chapters of any of these books. Any monoid can be understood as a special sort of category (with a single object whose self-morphisms are represented by the elements of the monoid), and so can any
preorder In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special c ...
.


Definition

There are many equivalent definitions of a category. One commonly used definition is as follows. A category ''C'' consists of * a class ob(''C'') of objects, * a class hom(''C'') of
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s, or arrows, or maps between the objects, *a domain, or source object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , *a codomain, or target object class function \mathrm\colon \mathrm(C)\rightarrow \mathrm(C) , * for every three objects ''a'', ''b'' and ''c'', a binary operation hom(''a'', ''b'') × hom(''b'', ''c'') → hom(''a'', ''c'') called ''composition of morphisms''; the composition of ''f'' : ''a'' → ''b'' and ''g'' : ''b'' → ''c'' is written as ''g'' ∘ ''f'' or ''gf''. (Some authors use "diagrammatic order", writing ''f;g'' or ''fg''). Note: Here hom(''a'', ''b'') denotes the subclass of morphisms ''f'' in hom(''C'') such that \mathrm(f) = a and \mathrm(f) = b. Such morphisms are often written as ''f'' : ''a'' → ''b''. such that the following axioms hold: * ( associativity) if ''f'' : ''a'' → ''b'', ''g'' : ''b'' → ''c'' and ''h'' : ''c'' → ''d'' then ''h'' ∘ (''g'' ∘ ''f'') = (''h'' ∘ ''g'') ∘ ''f'', and * ( identity) for every object ''x'', there exists a morphism 1''x'' : ''x'' → ''x'' (some authors write ''id''''x'') called the ''identity morphism for x'', such that every morphism ''f'' : ''a'' → ''x'' satisfies 1''x'' ∘ ''f'' = ''f'', and every morphism ''g'' : ''x'' → ''b'' satisfies ''g'' ∘ 1''x'' = ''g''. We write ''f'': ''a'' → ''b'', and we say "''f'' is a morphism from ''a'' to ''b''". We write hom(''a'', ''b'') (or hom''C''(''a'', ''b'') when there may be confusion about to which category hom(''a'', ''b'') refers) to denote the hom-class of all morphisms from ''a'' to ''b''.Some authors write Mor(''a'', ''b'') or simply ''C''(''a'', ''b'') instead. From these axioms, one can prove that there is exactly one identity morphism for every object. Some authors use a slight variation of the definition in which each object is identified with the corresponding identity morphism.


Small and large categories

A category ''C'' is called small if both ob(''C'') and hom(''C'') are actually sets and not
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map for ...
es, and large otherwise. A locally small category is a category such that for all objects ''a'' and ''b'', the hom-class hom(''a'', ''b'') is a set, called a homset. Many important categories in mathematics (such as the category of sets), although not small, are at least locally small. Since, in small categories, the objects form a set, a small category can be viewed as an
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
similar to a monoid but without requiring closure properties. Large categories on the other hand can be used to create "structures" of algebraic structures.


Examples

The class of all sets (as objects) together with all functions between them (as morphisms), where the composition of morphisms is the usual
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
, forms a large category, Set. It is the most basic and the most commonly used category in mathematics. The category Rel consists of all sets (as objects) with
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
s between them (as morphisms). Abstracting from
relations Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public ...
instead of functions yields allegories, a special class of categories. Any class can be viewed as a category whose only morphisms are the identity morphisms. Such categories are called discrete. For any given set ''I'', the ''discrete category on I'' is the small category that has the elements of ''I'' as objects and only the identity morphisms as morphisms. Discrete categories are the simplest kind of category. Any
preordered set In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. Preorders are more general than equivalence relations and (non-strict) partia ...
(''P'', ≤) forms a small category, where the objects are the members of ''P'', the morphisms are arrows pointing from ''x'' to ''y'' when ''x'' ≤ ''y''. Furthermore, if ''≤'' is antisymmetric, there can be at most one morphism between any two objects. The existence of identity morphisms and the composability of the morphisms are guaranteed by the reflexivity and the transitivity of the preorder. By the same argument, any partially ordered set and any
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
can be seen as a small category. Any
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least n ...
can be seen as a category when viewed as an ordered set. Any monoid (any
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
with a single
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement f ...
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
and an identity element) forms a small category with a single object ''x''. (Here, ''x'' is any fixed set.) The morphisms from ''x'' to ''x'' are precisely the elements of the monoid, the identity morphism of ''x'' is the identity of the monoid, and the categorical composition of morphisms is given by the monoid operation. Several definitions and theorems about monoids may be generalized for categories. Similarly any group can be seen as a category with a single object in which every morphism is ''invertible'', that is, for every morphism ''f'' there is a morphism ''g'' that is both left and right inverse to ''f'' under composition. A morphism that is invertible in this sense is called an isomorphism. A groupoid is a category in which every morphism is an isomorphism. Groupoids are generalizations of groups, group actions and
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
s. Actually, in the view of category the only difference between groupoid and group is that a groupoid may have more than one object but the group must have only one. Consider a topological space ''X'' and fix a base point x_0 of ''X'', then \pi_1(X,x_0) is the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of the topological space ''X'' and the base point x_0, and as a set it has the structure of group; if then let the base point x_0 runs over all points of ''X'', and take the union of all \pi_1(X,x_0), then the set we get has only the structure of groupoid (which is called as the
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of ...
of ''X''): two loops (under equivalence relation of homotopy) may not have the same base point so they cannot multiply with each other. In the language of category, this means here two morphisms may not have the same source object (or target object, because in this case for any morphism the source object and the target object are same: the base point) so they can not compose with each other. Any directed graph generates a small category: the objects are the vertices of the graph, and the morphisms are the paths in the graph (augmented with
loop Loop or LOOP may refer to: Brands and enterprises * Loop (mobile), a Bulgarian virtual network operator and co-founder of Loop Live * Loop, clothing, a company founded by Carlos Vasquez in the 1990s and worn by Digable Planets * Loop Mobile, ...
s as needed) where composition of morphisms is concatenation of paths. Such a category is called the '' free category'' generated by the graph. The class of all preordered sets with monotonic functions as morphisms forms a category, Ord. It is a concrete category, i.e. a category obtained by adding some type of structure onto Set, and requiring that morphisms are functions that respect this added structure. The class of all groups with group homomorphisms as
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s and
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
as the composition operation forms a large category, Grp. Like Ord, Grp is a concrete category. The category Ab, consisting of all abelian groups and their group homomorphisms, is a full subcategory of Grp, and the prototype of an abelian category. Other examples of concrete categories are given by the following table.
Fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
s with bundle maps between them form a concrete category. The category
Cat The cat (''Felis catus'') is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae and is commonly referred to as the domestic cat or house cat to distinguish it from the wild members of ...
consists of all small categories, with functors between them as morphisms.


Construction of new categories


Dual category

Any category ''C'' can itself be considered as a new category in a different way: the objects are the same as those in the original category but the arrows are those of the original category reversed. This is called the ''dual'' or ''opposite category'' and is denoted ''C''op.


Product categories

If ''C'' and ''D'' are categories, one can form the ''product category'' ''C'' × ''D'': the objects are pairs consisting of one object from ''C'' and one from ''D'', and the morphisms are also pairs, consisting of one morphism in ''C'' and one in ''D''. Such pairs can be composed componentwise.


Types of morphisms

A
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
''f'' : ''a'' → ''b'' is called * a '' monomorphism'' (or ''monic'') if it is left-cancellable, i.e. ''fg1'' = ''fg2'' implies ''g1'' = ''g2'' for all morphisms ''g''1, ''g2'' : ''x'' → ''a''. * an '' epimorphism'' (or ''epic'') if it is right-cancellable, i.e. ''g1f'' = ''g2f'' implies ''g1'' = ''g2'' for all morphisms ''g1'', ''g2'' : ''b'' → ''x''. * a '' bimorphism'' if it is both a monomorphism and an epimorphism. * a ''
retraction Retraction or retract(ed) may refer to: Academia * Retraction in academic publishing, withdrawals of previously published academic journal articles Mathematics * Retraction (category theory) * Retract (group theory) * Retraction (topology) Huma ...
'' if it has a right inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b''. * a '' section'' if it has a left inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''gf'' = 1''a''. * an '' isomorphism'' if it has an inverse, i.e. if there exists a morphism ''g'' : ''b'' → ''a'' with ''fg'' = 1''b'' and ''gf'' = 1''a''. * an '' endomorphism'' if ''a'' = ''b''. The class of endomorphisms of ''a'' is denoted end(''a''). * an ''
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphi ...
'' if ''f'' is both an endomorphism and an isomorphism. The class of automorphisms of ''a'' is denoted aut(''a''). Every retraction is an epimorphism. Every section is a monomorphism. The following three statements are equivalent: * ''f'' is a monomorphism and a retraction; * ''f'' is an epimorphism and a section; * ''f'' is an isomorphism. Relations among morphisms (such as ''fg'' = ''h'') can most conveniently be represented with
commutative diagram 350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
s, where the objects are represented as points and the morphisms as arrows.


Types of categories

* In many categories, e.g. Ab or Vect''K'', the hom-sets hom(''a'', ''b'') are not just sets but actually abelian groups, and the composition of morphisms is compatible with these group structures; i.e. is bilinear. Such a category is called preadditive. If, furthermore, the category has all finite products and coproducts, it is called an
additive category In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. Definition A category C is preadditive if all its hom-sets are abelian groups and composition of m ...
. If all morphisms have a kernel and a cokernel, and all epimorphisms are cokernels and all monomorphisms are kernels, then we speak of an abelian category. A typical example of an abelian category is the category of abelian groups. * A category is called complete if all small limits exist in it. The categories of sets, abelian groups and topological spaces are complete. * A category is called
cartesian closed In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in math ...
if it has finite direct products and a morphism defined on a finite product can always be represented by a morphism defined on just one of the factors. Examples include Set and CPO, the category of complete partial orders with Scott-continuous functions. * A topos is a certain type of cartesian closed category in which all of mathematics can be formulated (just like classically all of mathematics is formulated in the category of sets). A topos can also be used to represent a logical theory.


See also

* Enriched category * Higher category theory * Quantaloid * Table of mathematical symbols


Notes


References

* (now free on-line edition,
GNU FDL The GNU Free Documentation License (GNU FDL or simply GFDL) is a copyleft license for free documentation, designed by the Free Software Foundation (FSF) for the GNU Project. It is similar to the GNU General Public License, giving readers the ...
). * . * . *. * . * * . * . * . * . * . * . * {{Authority control *